Bangladeshi Sign Language Recognition Employing Neural Network Ensemble
نویسندگان
چکیده
منابع مشابه
Sign Language Recognition
This chapter covers the key aspects of Sign Language Recognition (SLR), starting with a brief introduction to the motivations and requirements, followed by a précis of sign linguistics and their impact on the field. The types of data available and the relative merits are explored allowing examination of the features which can be extracted. Classifying the manual aspects of sign (similar to gest...
متن کاملVisual Sign Language Recognition
We have developed the Hand Motion Understanding (HMU) system that understands static and dynamic signs of the Australian Sign Language (Auslan). The HMU system uses a visual 3D hand tracker for motion sensing, and an adaptive fuzzy expert system for classification of the signs. This paper presents the hand tracker that extracts 3D hand configuration data with 21 degrees-of-freedom (DOFs) from a...
متن کاملSign Language Recognition
Our goal here is to recognize a sign language measured from wearable sensor gloves. A sign language is expressed as a sequence of gestural patterns to convey a meaning. Hidden Markov models (HMMs) have been shown to be successful in temporal pattern recognition, such as speech, handwriting, and gesture recognition [4]. In this project, we investigate how well HMMs can perform when applied to si...
متن کاملOn Arabic Character Recognition Employing Hybrid Neural Network
Arabic characters illustrate intricate, multidimensional and cursive visual information. Developing a machine learning system for Arabic character recognition is an exciting research. This paper addresses a neural computing concept for Arabic Optical Character Recognition (OCR). The method is based on local image sampling of each character to a selected feature matrix and feeding these matrices...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2012
ISSN: 0975-8887
DOI: 10.5120/9370-3846